Ana səhifə

On The Origin of Species by Means of Natural Selection


Yüklə 0.99 Mb.
səhifə1/28
tarix12.06.2016
ölçüsü0.99 Mb.
  1   2   3   4   5   6   7   8   9   ...   28


On The Origin of Species by Means of Natural Selection,
or
The Preservation of Favoured Races in the Struggle for Life
First Edition

by Charles Darwin

copiado por:





The Origin of Species


Preface to the Third Edition
by Charles Darwin

I
will here give a brief sketch of the progress of opinion on the Origin of Species. Until recently the great majority of naturalists believed that species were immutable productions, and had been separately created. This view has been ably maintained by many authors. Some few naturalists, on the other hand, have believed that species undergo modification, and that the existing forms of life are the descendants by true generation of pre-existing forms. Passing over allusions to the subject in the classical writers,(1) the first author who in modern times has treated it in a scientific spirit was Buffon. But as his opinions fluctuated greatly at different periods, and as he does not enter on the causes or means of the transformation of species, I need not here enter on details.

Lamarck was the first man whose conclusions on the subject excited much attention. This justly-celebrated naturalist first published his views in 1801; he much enlarged them in 1809 in his "Philosophie Zoologique,' and subsequently, in 1815, in the Introduction to his "Hist. Nat. des Animaux sans Vertébres.' In these works he upholds the doctrine that species, including man, are descended from other species. He first did the eminent service of arousing attention to the probability of all change in the organic, as well as in the inorganic world, being the result of law, and not of miraculous interposition. Lamarck seems to have been chiefly led to his conclusion on the gradual change of species, by the difficulty of distinguishing species and varieties, by the almost perfect gradation of forms in certain groups, and by the analogy of domestic productions. With respect to the means of modification, he attributed something to the direct action of the physical conditions of life, something to the crossing of already existing forms, and much to use and disuse, that is, to the effects of habit. To this latter agency he seemed to attribute all the beautiful adaptations in nature; -- such as the long neck of the giraffe for browsing on the branches of trees. But he likewise believed in a law of progressive development; and as all the forms of life thus tend to progress, in order to account for the existence at the present day of simple productions, he maintains that such forms are now spontaneously generated.(2)

Geoffroy Saint-Hilaire, as is stated in his 'Life,' written by his son, suspected, as early as 1795, that what we call species are various degenerations of the same type. It was not until 1828 that he published his conviction that the same forms have not been perpetuated since the origin of all things. Geoffroy seems to have relied chiefly on the conditions of life, or the 'monde ambiant' as the cause of change. He was cautious in drawing conclusions, and did not believe that existing species are now undergoing modification; and, as his son adds, "C'est donc un problème à réserver entièrement à l'avenir, supposé meme que l'avenir doive avoir prise sur lui.'

In 1813, Dr W. C. Wells read before the Royal Society 'An Account of a White female, part of whose skin resembled that of a Negro'; but his paper was not published until his famous 'Two Essays upon Dew and Single Vision' appeared in 1818. In this paper he distinctly recognises the principle of natural selection, and this is the first recognition which has been indicated; but he applies it only to the races of man, and to certain characters alone. After remarking that negroes and mulattoes enjoy an immunity from certain tropical diseases, he observes, firstly, that all animals tend to vary in some degree, and, secondly, that agriculturists improve their domesticated animals by selection; and then, he adds, but what is done in this latter case 'by art, seems to be done with equal efficacy, though more slowly, by nature, in the formation of varieties of mankind, fitted for the country which they inhabit. Of the accidental varieties of man, which would occur among the first few and scattered inhabitants of the middle regions of Africa, some one would be better fitted than the others to bear the diseases of the country. This race would consequently multiply, while the others would decrease; not only from their inability to sustain the attacks of disease, but from their incapacity of contending with their more vigorous neighbours. The colour of this vigorous race I take for granted, from what has been already said, would be dark. But the same disposition to form varieties still existing, a darker and a darker race would in the course of time occur: and as the darkest would be the best fitted for the climate, this would at length become the most prevalent; if not the only race, in the particular country in which it had originated.' He then extends these same views to the white inhabitants of colder climates. I am indebted to Mr Rowley, of the United States, for having called my attention, through Mr Brace, to the above passage in Dr Wells' work.

The Hon. and Rev. W. Herbert, afterwards Dean of Manchester, in the fourth volume of the 'Horticultural Transactions,' 1822, and in his work on the 'Amaryllidaceae' (1837, pp. 19, 339), declares that 'horticultural experiments have established, beyond the possibility of refutation, that botanical species are only a higher and more permanent class of varieties.' He extends the same view to animals. The Dean believes that single species of each genus were created in an originally highly plastic condition, and that these have produced, chiefly by intercrossing, but likewise by variation, all our existing species.

In 1826 Professor Grant, in the concluding paragraph in his well-known paper ('Edinburgh philosophical journal,' vol. xiv. p. 283) on the Spongilla, clearly declares his belief that species are descended from other species, and that they become improved in the course of modification. This same view was given in his 55th Lecture, published in the 'Lancet' in 1834.

In 1831 Mr Patrick Matthew published his work on 'Naval Timber and Arboriculture,' in which he gives precisely the same view on the origin of species as that (presently to be alluded to) propounded by Mr Wallace and myself in the 'Linnean journal,' and as that enlarged in the present volume. Unfortunately the view was given by Mr Matthew very briefly in scattered passages in an Appendix to a work on a different subject, so that it remained unnoticed until Mr Matthew himself drew attention to it in the 'Gardener's Chronicle,' on April 7th, 1860. The differences of Mr Matthew's view from mine are not of much importance; he seems to consider that the world was nearly depopulated at successive periods, and then re-stocked; and he gives as an alternative, that new forms may be generated ' without the presence of any mould or germ of former aggregates.' I am not sure that I understand some passages; but it seems that he attributes much influence to the direct action of the conditions of life. He clearly saw, however, the full force of the principle of natural selection.

The celebrated geologist and naturalist, Von Buch, in his excellent 'Description physique des Isles Canaries' (1836, p. 147), clearly expresses his belief that varieties slowly become changed into permanent species, which are no longer capable of intercrossing.

Rafinesque, in his 'New Flora of North America,' published in 1836, wrote (p. 6) as follows:- 'All species might have been varieties once, and many varieties are gradually becoming species by assuming constant and peculiar characters'; but farther on (p. 18) he adds, 'except the original types or ancestors of the genus.'

In 1843-44 Professor Haldeman ('Boston journal of Nat. Hist. U. States, vol. iv. p. 468) has ably given the arguments for and against the hypothesis of the development and modification of species: he seems to lean towards the side of change.

The 'Vestiges of Creation' appeared in 1844. In the tenth and much improved edition (1853) the anonymous author says (p. 155):- 'The proposition determined on after much consideration is, that the several series of animated beings, from the simplest and oldest up to the highest and most recent, are, under the providence of God, the results, first, of an impulse which has been imparted to the forms of life, advancing them, in definite times, by generation, through grades of organisation terminating in the highest dicotyledons- and vertebrata, these grades being few in number, and generally marked by intervals of organic character, which we find to be a practical difficulty in ascertaining affinities; second, of another impulse connected with the vital forces, tending, in the course of generations, to modify organic structures in accordance with external circumstances, as food, the nature of the habitat, and the meteoric agencies, these being the ''adaptations'' of the natural theologian.' The author apparently believes that organisation progresses by sudden leaps, but that the effects produced by the conditions of life are gradual. He argues with much force on general grounds that species are not immutable productions. But I cannot see how the two supposed 'impulses' account in a scientific sense for the numerous and beautiful co-adaptations which we see throughout nature; I cannot see that we thus gain any insight how, for instance, a woodpecker has become adapted to its peculiar habits of Life. The work, from its powerful and brilliant style, though displaying in the earlier editions little accurate knowledge and a great want of scientific caution, immediately had a very wide circulation. In my opinion it has done excellent service in this country in calling attention to the subject, in removing prejudice, and in thus preparing the ground for the reception of analogous views.

In 1846 the veteran geologist N. J. d'Omalius d'Halloy published in an excellent though short paper ("Bulletins de l'Acad. Roy Bruxelles,' tom. xiii. p. 581) his opinion that it is more probable that new species have been produced by descent with modification than that they have been separately created: the author first promulgated this opinion in 1831.

Professor Owen, in 1849 ('Nature of Limbs,' p. 86), wrote as follows:- "The archetypal idea was manifested in the flesh under diverse such modifications, upon this planet, long prior to the existence of those animal species that actually exemplify it. To what natural laws or secondary causes the orderly succession and progression of such organic phenomena may have been committed, we, as yet, are ignorant.' In his Address to the British Association, in 1858, he speaks (p. li.) of "the axiom of the continuous operation of creative power, or of the ordained becoming of living things.' Farther on (p. xc.), after referring to geographical distribution, he adds, 'These phenomena shake our confidence in the conclusion that the Apteryx of New Zealand and the Red Grouse of England were distinct creations in and for those islands respectively. Always, also, it may be well to bear in mind that by the word ''creation'' the zoologist means '"a process he knows not what.'' He amplifies this idea by adding that when such cases as that of the Red Grouse are enumerated by the zoologists as evidence of distinct creation of the bird in and for such islands, he chiefly expresses that he knows not how the Red Grouse came to be there, and there exclusively; signifying also, by this mode of expressing such ignorance, his belief that both the bird and the islands owed their origin to a great first Creative Cause.' If we interpret these sentences given in the same Address, one by the other, it appears that this eminent philosopher felt in 1858 his confidence shaken that the Apteryx and the Red Grouse first appeared in their respective homes, 'he knew not how,' or by some process 'he knew not what.'

This Address was delivered after the papers by Mr Wallace and myself on the Origin of Species, presently to be referred to, had been read before the Linnean Society. When the first edition of this work was published, I was so completely deceived, as were many others, by such expressions as 'the continuous operation of creative power,' that I included Professor Owen with other palaeontologists as being firmly convinced of the immutability of species; but it appears ('Anat. of Vertebrates,' vol. iii. p. 796) that this was on my part a preposterous error. In the last edition of this work I inferred, and the inference still seems to me perfectly just, from a passage beginning with the words 'no doubt the type-form,' &c. (Ibid. vol. i. p. xxxv.), that Professor Owen admitted that natural selection may have done something in the formation of a new species; but this it appears (Ibid. vol. nl. p. 798) is inaccurate and without evidence. I also gave some extracts from a correspondence between Professor Owen and the Editor of the 'London Review,' from which it appeared manifest to the Editor as well as to myself, that Professor Owen claimed to have promulgated the theory of natural selection before I had done so; and I expressed my surprise and satisfaction at this announcement; but as far as it is possible to understand certain recently published passages (Ibid. vol. iii. p. 798) I have either partially or wholly again fallen into error. It is consolatory to me that others find Professor Owen's controversial writings as difficult to understand and to reconcile with each other, as I do. As far as the mere enunciation of the principle of natural selection is concerned, it is quite immaterial whether or not Professor Owen preceded me, for both of us, as shown in this historical sketch, were long ago preceded by Dr Wells and Mr Matthews.

M. Isidore Geoffroy Saint-Hilaire, in his lectures delivered in 1850 (of which a Résumé appeared in the 'Revue et Nag. de Zoolog.,' Jan. 1851), briefly gives his reason for believing that specific characters "sont fixés, pour chaque espèce, tant qu'elle se perpétue au milieu des mèmes circonstances: ils se modifient, si les circonstances ambiantes viennent à changer.' 'En résumé, l'observation des animaux sauvages démontre déjà la variabilité limité des espèces. Les expériences sur les animaux sauvages devenus domestiques, et sur les animaux domestiques redevenus sauvages, la démontrent plus clairement encore. Ces memes expériences prouvent, de plus, que les différences produites peuvent etre de valeur générique.' In his 'Hist. Nat. Généralé (tom. ii. p. 430, 1859) he amplifies analogous conclusions.

From a circular lately issued it appears that Dr Freke, in 1851 ("Dublin Medical Press,' p. 322), propounded the doctrine that all organic beings have descended from one primordial form. His grounds of belief and treatment of the subject are wholly different from mine; but as Dr Freke has now (1861) published his Essay on the 'Origin of Species by means of Organic Affinity,' the difficult attempt to give any idea of his views would be superfluous on my part.

Mr Herbert Spencer, in an Essay (originally published in the 'Leader,' March, 1852, and republished in his 'Essays,' in 1858), has contrasted the theories of the Creation and the Development of organic beings with remarkable skill and force. He argues from the analogy of domestic productions, from the changes which the embryos of many species undergo, from the difficulty of distinguishing species and varieties, and from the principle of general gradation, that species have been modified; and he attributes the modification to the change of circumstances. The author (1855) has also treated psychology on the principle of the necessary acquirement of each mental power and capacity by gradation.

In 1852 M. Naudin, a distinguished botanist, expressly stated, in an admirable paper on the Origin of Species ('Revue Horticole, p. 102; since partly republished in the 'Nouvelles Archives du Muséum,' tom. i. p. 171), his belief that species are formed in an analogous manner as varieties are under cultivation; and the latter process he attributes to man's power of selection. But he does not show how selection acts under nature. He believes, like Dean Herbert, that species, when nascent, were more plastic than at present. He lays weight on what he calls the principle of finality, 'puissance mystérieuse, indéterminée; fatalité pour les uns; pour les autres volonté providentielle, dont l'action incessante sur les ètres vivants détermine, à toutes les époques de l'existence du monde, la forme, le volume, et la durée de chacun d'eux, en raison de sa destinée dans l'ordre de choses dont il fait partie. C'est cette puissance qui harmonise chaque membre à l'ensemble, en l'appropriant à la fonction qu'il doit remplir dans l'organisme général de la nature, fonction qui est pour lui sa raison d'ètre.'(3)

In 1853 a celebrated geologist, Count Keyserling ("Bulletin de la Soc. Gèolog.,' 2nd Ser., tom. x. p. 357), suggested that as new diseases, supposed to have been caused by some miasma, have arisen and spread over the world, so at certain periods the germs of existing species may have been chemically affected by circumambient molecules of a particular nature, and thus have given rise to new forms.

In this same year, 1853, Dr Schaaffhausen published an excellent pamphlet ('Verhand. des Naturhist. Vereins der preuss. Rheinlands,' &c.), in which he maintains the development of organic forms on the earth. He infers that many species have kept true for long periods, whereas a few have become modified. The distinction of species he explains by the destruction of intermediate graduated forms. 'Thus living plants and animals are not separated from the extinct by new creations, but are to be regarded as their descendants through continued reproduction.'

A well-known French botanist, M. Lecoq, writes in 1854 ('Etudes sur Géograph. Bot.,' tom. i. p. 250), 'On voit que nos recherches sur la fixité ou la variation de l'espèce, nous conduisent directement aux idées émises, par deux hommes justement célèbres, Geoffroy Saint-Hilaire et Goethe.' Some other passages scattered through M. Lecoq's large work, make it a little doubtful how far he extends his views on the modification of species.

The 'Philosophy of Creation' has been treated in a masterly manner by the Rev. Baden Powell, in his "Essays on the Unity of Worlds,' 1855. Nothing can be more striking than the manner in which he shows that the introduction of new species is "a regular, not a casual phenomenon,' or, as Sir John Herschel expresses it, 'a natural in contradistinction to a miraculous, process.'

The third volume of the "Journal of the Linnean Society' contains papers, read July 1st, 1858, by Mr Wallace and myself, in which, as stated in the introductory remarks to this volume, the theory of Natural Selection is promulgated by Mr Wallace with admirable force and clearness.

Von Baer, towards whom all zoologists feel so profound a respect, expressed about the year 1859 (see Prof. Rudolph Wagner, a "Zoologisch-Anthropologische Untersuchungen,' 1861, s. 51) his conviction, chiefly grounded on the laws of geographical distribution, that forms now perfectly distinct have descended from a single parent-form.

In June, 1859, Professor Huxley gave a lecture before the Royal Institution on the 'Persistent Types of Animal Life.' Referring to such cases, he remarks, "It is difficult to comprehend the meaning of such facts as these, if we suppose that each species of animal and plant, or each great type of organisation, was formed and placed upon the surface of the globe at long intervals by a distinct act of creative power; and it is well to recollect that such an assumption is as unsupported by tradition or revelation as it is opposed to the general analogy of nature. If, on the other hand, we view 'Persistent Types' in relation to that hypothesis which supposes the species living at any time to be the result of the gradual modification of pre-existing species a hypothesis which, though unproven, and sadly damaged by some of its supporters, is yet the only one to which physiology lends any countenance; their existence would seem to show that the amount of modification which living beings have undergone during geological time is but very small in relation to the whole series of changes which they have suffered.'

In December, 1859, Dr Hooker published his 'Introduction to the Australian Flora.' In the first part of this great work he admits the truth of the descent and modification of species, and supports this doctrine by many original observations.

The first edition of this work was published on November 24th, 1859, and the second edition on January 7th, 1860.



Footnotes

(1) Aristotle, in his 'Physicae Auscultationes' (lib. 2, cap. 8, s. 2), after remarking that rain does not fall in order to make the corn grow, any more than it falls to spoil the farmer's corn when threshed out of doors, applies the same argument to organization: and adds (as translated by Mr Clair Grece, who first pointed out the passage to me), 'So what hinders the different parts [of the body] from having this merely accidental relation in nature? as the teeth, for example, grow by necessity, the front ones sharp, adapted for dividing, and the grinders flat, and serviceable for masticating the food; since they were not made for the sake of this, but it was the result of accident. And in like manner as to the other parts in which there appears to exist an adaptation to an end. Wheresoever, therefore, all things together (that is all the parts of one whole) happened like as if they were made for the sake of something, these were preserved, having been appropriately constituted by an internal spontaneity, and whatsoever things were not thus constituted, perished, and still perish. We here see the principle of natural selection shadowed forth, but how little Aristotle fully comprehended the principle, is shown by his remarks on the formation of the teeth.

(2) I have taken the date of the first publication of Lamarck from Isid. Geoffroy Saint-Hilaire's ('Hist. Nat. Générale,' tom. ii. p. 405, 1859) excellent history of opinion on this subject. In this work a full account is given of Buffon's conclusions on the same subject. It is curious how largely my grandfather, Dr Erasmus Darwin, anticipated the views and erroneous grounds of opinion of Lamarck in his 'Zoonomia' (vol. i. pp. 500-510), published in 1794. According to Isid. Geoffroy there is no doubt that Goethe was an extreme partisan of similar views, as shown in the Introduction to a work written in 1794 and 1795, but not published till long afterwards: he has pointedly remarked ('Goethe als Naturforscher,' von Dr Karl Medinge s. 34) that the future question for naturalists will be how, for instance, cattle got their horns, and not for what they are used. It is rather a singular instance of the manner in which similar views arise at about the same time, that Goethe in Germany, Dr Darwin in England, and Geoffroy Saint-Hilaire (as we shall immediately see) in France; came to the same conclusion on the origin of species, in the years 1794-5.

(3) From references in Bronn's 'Untersuchungen über die Entwickenlungs-Gesetze,' it appears that the celebrated botanist and palaeontologist Unger published, in 1852, his belief that species undergo development and modification. Dalton, likewise, in Pander and Dalton's work on Fossil Sloths, expressed, in 1821 a similar belief. Similar views have, as is well known, been maintained by Oken in his mystical 'Natur-philosophie.' From other references in Godron's work 'Sur l'Espéce,' it seems that Bory St Vincent, Burdach, Poiret, and Fries, have all admitted that new species are continually being produced.

I may add, that of the thirty-four authors named in this Historical Sketch, who believe in the modification of species, or at least disbelieve in separate acts of creation, twenty-seven have written on special branches of natural history or geology.

Introduction

When on board H.M.S. Beagle, as naturalist, I was much struck with certain facts in the distribution of the inhabitants of South America, and in the geological relations of the present to the past inhabitants of that continent. These facts seemed to me to throw some light on the origin of species -- that mystery of mysteries, as it has been called by one of our greatest philosophers. On my return home, it occurred to me, in 1837, that something might perhaps be made out on this question by patiently accumulating and reflecting on all sorts of facts which could possibly have any bearing on it. After five years' work I allowed myself to speculate on the subject, and drew up some short notes; these I enlarged in 1844 into a sketch of the conclusions, which then seemed to me probable: from that period to the present day I have steadily pursued the same object. I hope that I may be excused for entering on these personal details, as I give them to show that I have not been hasty in coming to a decision.

My work is now nearly finished; but as it will take me two or three more years to complete it, and as my health is far from strong, I have been urged to publish this Abstract. I have more especially been induced to do this, as Mr Wallace, who is now studying the natural history of the Malay archipelago, has arrived at almost exactly the same general conclusions that I have on the origin of species. Last year he sent to me a memoir on this subject, with a request that I would forward it to Sir Charles Lyell, who sent it to the Linnean Society, and it is published in the third volume of the journal of that Society. Sir C. Lyell and Dr Hooker, who both knew of my work -- the latter having read my sketch of 1844 -- honoured me by thinking it advisable to publish, with Mr Wallace's excellent memoir, some brief extracts from my manuscripts.

This Abstract, which I now publish, must necessarily be imperfect. I cannot here give references and authorities for my several statements; and I must trust to the reader reposing some confidence in my accuracy. No doubt errors will have crept in, though I hope I have always been cautious in trusting to good authorities alone. I can here give only the general conclusions at which I have arrived, with a few facts in illustration, but which, I hope, in most cases will suffice. No one can feel more sensible than I do of the necessity of hereafter publishing in detail all the facts, with references, on which my conclusions have been grounded; and I hope in a future work to do this. For I am well aware that scarcely a single point is discussed in this volume on which facts cannot be adduced, often apparently leading to conclusions directly opposite to those at which I have arrived. A fair result can be obtained only by fully stating and balancing the facts and arguments on both sides of each question; and this cannot possibly be here done.

I much regret that want of space prevents my having the satisfaction of acknowledging the generous assistance which I have received from very many naturalists, some of them personally unknown to me. I cannot, however, let this opportunity pass without expressing my deep obligations to Dr Hooker, who for the last fifteen years has aided me in every possible way by his large stores of knowledge and his excellent judgement.

In considering the Origin of Species, it is quite conceivable that a naturalist, reflecting on the mutual affinities of organic beings, on their embryological relations, their geographical distribution, geological succession, and other such facts, might come to the conclusion that each species had not been independently created, but had descended, like varieties, from other species. Nevertheless, such a conclusion, even if well founded, would be unsatisfactory, until it could be shown how the innumerable species inhabiting this world have been modified so as to acquire that perfection of structure and co-adaptation which most justly excites our admiration. Naturalists continually refer to external conditions, such as climate, food, &c., as the only possible cause of variation. In one very limited sense, as we shall hereafter see, this may be true; but it is preposterous to attribute to mere external conditions, the structure, for instance, of the woodpecker, with its feet, tail, beak, and tongue, so admirably adapted to catch insects under the bark of trees. In the case of the misseltoe, which draws its nourishment from certain trees, which has seeds that must be transported by certain birds, and which has flowers with separate sexes absolutely requiring the agency of certain insects to bring pollen from one flower to the other, it is equally preposterous to account for the structure of this parasite, with its relations to several distinct organic beings, by the effects of external conditions, or of habit, or of the volition of the plant itself.

The author of the 'Vestiges of Creation' would, I presume, say that, after a certain unknown number of generations, some bird had given birth to a woodpecker, and some plant to the misseltoe, and that these had been produced perfect as we now see them; but this assumption seems to me to be no explanation, for it leaves the case of the coadaptations of organic beings to each other and to their physical conditions of life, untouched and unexplained.

It is, therefore, of the highest importance to gain a clear insight into the means of modification and coadaptation. At the commencement of my observations it seemed to me probable that a careful study of domesticated animals and of cultivated plants would offer the best chance of making out this obscure problem. Nor have I been disappointed; in this and in all other perplexing cases I have invariably found that our knowledge, imperfect though it be, of variation under domestication, afforded the best and safest clue. I may venture to express my conviction of the high value of such studies, although they have been very commonly neglected by naturalists.

From these considerations, I shall devote the first chapter of this Abstract to Variation under Domestication. We shall thus see that a large amount of hereditary modification is at least possible, and, what is equally or more important, we shall see how great is the power of man in accumulating by his Selection successive slight variations. I will then pass on to the variability of species in a state of nature; but I shall, unfortunately, be compelled to treat this subject far too briefly, as it can be treated properly only by giving long catalogues of facts. We shall, however, be enabled to discuss what circumstances are most favourable to variation. In the next chapter the Struggle for Existence amongst all organic beings throughout the world, which inevitably follows from their high geometrical powers of increase, will be treated of. This is the doctrine of Malthus, applied to the whole animal and vegetable kingdoms. As many more individuals of each species are born than can possibly survive; and as, consequently, there is a frequently recurring struggle for existence, it follows that any being, if it vary however slightly in any manner profitable to itself, under the complex and sometimes varying conditions of life, will have a better chance of surviving, and thus be naturally selected. From the strong principle of inheritance, any selected variety will tend to propagate its new and modified form.

This fundamental subject of Natural Selection will be treated at some length in the fourth chapter; and we shall then see how Natural Selection almost inevitably causes much Extinction of the less improved forms of life and induces what I have called Divergence of Character. In the next chapter I shall discuss the complex and little known laws of variation and of correlation of growth. In the four succeeding chapters, the most apparent and gravest difficulties on the theory will be given: namely, first, the difficulties of transitions, or understanding how a simple being or a simple organ can be changed and perfected into a highly developed being or elaborately constructed organ; secondly the subject of Instinct, or the mental powers of animals, thirdly, Hybridism, or the infertility of species and the fertility of varieties when intercrossed; and fourthly, the imperfection of the Geological Record. In the next chapter I shall consider the geological succession of organic beings throughout time; in the eleventh and twelfth, their geographical distribution throughout space; in the thirteenth, their classification or mutual affinities, both when mature and in an embryonic condition. In the last chapter I shall give a brief recapitulation of the whole work, and a few concluding remarks.)

No one ought to feel surprise at much remaining as yet unexplained in regard to the origin of species and varieties, if he makes due allowance for our profound ignorance in regard to the mutual relations of all the beings which live around us. Who can explain why one species ranges widely and is very numerous, and why another allied species has a narrow range and is rare? Yet these relations are of the highest importance, for they determine the present welfare, and, as I believe, the future success and modification of every inhabitant of this world. Still less do we know of the mutual relations of the innumerable inhabitants of the world during the many past geological epochs in its history. Although much remains obscure, and will long remain obscure, I can entertain no doubt, after the most deliberate study and dispassionate judgement of which I am capable, that the view which most naturalists entertain, and which I formerly entertained -- namely, that each species has been independently created -- is erroneous. I am fully convinced that species are not immutable; but that those belonging to what are called the same genera are lineal descendants of some other and generally extinct species, in the same manner as the acknowledged varieties of any one species are the descendants of that species. Furthermore, I am convinced that Natural Selection has been the main but not exclusive means of modification
Chapter 1: Variation Under Domestication



Causes of Variability - Effects of Habit - Correlation of Growth - Inheritance - Character of Domestic Varieties - Difficulty of distinguishing between Varieties and Species - Origin of Domestic Varieties from one or more Species - Domestic pigeons, their Differences and Origin - Principle of Selection anciently followed, its Effects - Methodical and Unconscious Selection - Unknown Origin of our Domestic Productions - Circumstances favourable to Man's power of Selection

When we look to the individuals of the same variety or sub-variety of our older cultivated plants and animals, one of the first points which strikes us, is, that they generally differ much more from each other, than do the individuals of any one species or variety in a state of nature. When we reflect on the vast diversity of the plants and animals which have been cultivated, and which have varied during all ages under the most different climates and treatment, I think we are driven to conclude that this greater variability is simply due to our domestic productions having been raised under conditions of life not so uniform as, and somewhat different from, those to which the parent-species have been exposed under nature. There is, also, I think, some probability in the view propounded by Andrew Knight, that this variability may be partly connected with excess of food. It seems pretty clear that organic beings must be exposed during several generations to the new conditions of life to cause any appreciable amount of variation; and that when the organisation has once begun to vary, it generally continues to vary for many generations. No case is on record of a variable being ceasing to be variable under cultivation. Our oldest cultivated plants, such as wheat, still often yield new varieties: our oldest domesticated animals are still capable of rapid improvement or modification.

It has been disputed at what period of time the causes of variability, whatever they may be, generally act; whether during the early or late period of development of the embryo, or at the instant of conception. Geoffroy St Hilaire's experiments show that unnatural treatment of the embryo causes monstrosities; and monstrosities cannot be separated by any clear line of distinction from mere variations. But I am strongly inclined to suspect that the most frequent cause of variability may be attributed to the male and female reproductive elements having been affected prior to the act of conception. Several reasons make me believe in this; but the chief one is the remarkable effect which confinement or cultivation has on the functions of the reproductive system; this system appearing to be far more susceptible than any other part of the organization, to the action of any change in the conditions of life. Nothing is more easy than to tame an animal, and few things more difficult than to get it to breed freely under confinement, even in the many cases when the male and female unite. How many animals there are which will not breed, though living long under not very close confinement in their native country! This is generally attributed to vitiated instincts; but how many cultivated plants display the utmost vigour, and yet rarely or never seed! In some few such cases it has been found out that very trifling changes, such as a little more or less water at some particular period of growth, will determine whether or not the plant sets a seed. I cannot here enter on the copious details which I have collected on this curious subject; but to show how singular the laws are which determine the reproduction of animals under confinement, I may just mention that carnivorous animals, even from the tropics, breed in this country pretty freely under confinement, with the exception of the plantigrades or bear family; whereas, carnivorous birds, with the rarest exceptions, hardly ever lay fertile eggs. Many exotic plants have pollen utterly worthless, in the same exact condition as in the most sterile hybrids. When, on the one hand, we see domesticated animals and plants, though often weak and sickly, yet breeding quite freely under confinement; and when, on the other hand, we see individuals, though taken young from a state of nature, perfectly tamed, long-lived, and healthy (of which I could give numerous instances), yet having their reproductive system so seriously affected by unperceived causes as to fail in acting, we need not be surprised at this system, when it does act under confinement, acting not quite regularly, and producing offspring not perfectly like their parents or variable.

Sterility has been said to be the bane of horticulture; but on this view we owe variability to the same cause which produces sterility; and variability is the source of all the choicest productions of the garden. I may add, that as some organisms will breed most freely under the most unnatural conditions (for instance, the rabbit and ferret kept in hutches), showing that their reproductive system has not been thus affected; so will some animals and plants withstand domestication or cultivation, and vary very slightly perhaps hardly more than in a state of nature.

A long list could easily be given of 'sporting plants;' by this term gardeners mean a single bud or offset, which suddenly assumes a new and sometimes very different character from that of the rest of the plant. Such buds can be propagated by grafting, &c., and sometimes by seed. These 'sports' are extremely rare under nature, but far from rare under cultivation; and in this case we see that the treatment of the parent has affected a bud or offset, and not the ovules or pollen. But it is the opinion of most physiologists that there is no essential difference between a bud and an ovule in their earliest stages of formation; so that, in fact,'sports' support my view, that variability may be largely attributed to the ovules or pollen, or to both, having been affected by the treatment of the parent prior to the act of conception. These cases anyhow show that variation is not necessarily connected, as some authors have supposed, with the act of generation.

Seedlings from the same fruit, and the young of the same litter, sometimes differ considerably from each other, though both the young and the parents, as Muller has remarked, have apparently been exposed to exactly the same conditions of life; and this shows how unimportant the direct effects of the conditions of life are in comparison with the laws of reproduction, and of growth, and of inheritance; for had the action of the conditions been direct, if any of the young had varied, all would probably have varied in the same manner. To judge how much, in the case of any variation, we should attribute to the direct action of heat, moisture, light, food, &c., is most difficult: my impression is, that with animals such agencies have produced very little direct effect, though apparently more in the case of plants. Under this point of view, Mr Buckman's recent experiments on plants seem extremely valuable. When all or nearly all the individuals exposed to certain conditions are affected in the same way, the change at first appears to be directly due to such conditions; but in some cases it can be shown that quite opposite conditions produce similar changes of structure. Nevertheless some slight amount of change may, I think, be attributed to the direct action of the conditions of life as, in some cases, increased size from amount of food, colour from particular kinds of food and from light, and perhaps the thickness of fur from climate.

Habit also has a deciding influence, as in the period of flowering with plants when transported from one climate to another. In animals it has a more marked effect; for instance, I find in the domestic duck that the bones of the wing weigh less and the bones of the leg more, in proportion to the whole skeleton, than do the same bones in the wild-duck; and I presume that this change may be safely attributed to the domestic duck flying much less, and walking more, than its wild parent. The great and inherited development of the udders in cows and goats in countries where they are habitually milked, in comparison with the state of these organs in other countries, is another instance of the effect of use. Not a single domestic animal can be named which has not in some country drooping ears; and the view suggested by some authors, that the drooping is due to the disuse of the muscles of the ear, from the animals not being much alarmed by danger, seems probable.

There are many laws regulating variation, some few of which can be dimly seen, and will be hereafter briefly mentioned. I will here only allude to what may be called correlation of growth. Any change in the embryo or larva will almost certainly entail changes in the mature animal. In monstrosities, the correlations between quite distinct parts are very curious; and many instances are given in Isidore Geoffroy St Hilaire's great work on this subject. Breeders believe that long limbs are almost always accompanied by an elongated head. Some instances of correlation are quite whimsical; thus cats with blue eyes are invariably deaf; colour and constitutional peculiarities go together, of which many remarkable cases could be given amongst animals and plants. From the facts collected by Heusinger, it appears that white sheep and pigs are differently affected from coloured individuals by certain vegetable poisons. Hairless dogs have imperfect teeth; long-haired and coarse-haired animals are apt to have, as is asserted, long or many horns; pigeons with feathered feet have skin between their outer toes; pigeons with short beaks have small feet, and those with long beaks large feet. Hence, if man goes on selecting, and thus augmenting, any peculiarity, he will almost certainly unconsciously modify other parts of the structure, owing to the mysterious laws of the correlation of growth.

The result of the various, quite unknown, or dimly seen laws of variation is infinitely complex and diversified. It is well worth while carefully to study the several treatises published on some of our old cultivated plants, as on the hyacinth, potato, even the dahlia, &c.; and it is really surprising to note the endless points in structure and constitution in which the varieties and sub varieties differ slightly from each other. The whole organization seems to have become plastic, and tends to depart in some small degree from that of the parental type.

Any variation which is not inherited is unimportant for us. But the number and diversity of inheritable deviations of structure, both those of slight and those of considerable physiological importance, is endless. Dr Prosper Lucas's treatise, in two large volumes, is the fullest and the best on this subject. No breeder doubts how strong is the tendency to inheritance: like produces like is his fundamental belief: doubts have been thrown on this principle by theoretical writers alone. When a deviation appears not unfrequently, and we see it in the father and child, we cannot tell whether it may not be due to the same original cause acting on both; but when amongst individuals, apparently exposed to the same conditions, any very rare deviation, due to some extraordinary combination of circumstances, appears in the parent say, once amongst several million individuals and it reappears in the child, the mere doctrine of chances almost compels us to attribute its reappearance to inheritance. Every one must have heard of cases of albinism, prickly skin, hairy bodies, &c. appearing in several members of the same family. If strange and rare deviations of structure are truly inherited, less strange and commoner deviations may be freely admitted to be inheritable. Perhaps the correct way of viewing the whole subject, would be, to look at the inheritance of every character whatever as the rule, and non-inheritance as the anomaly.

The laws governing inheritance are quite unknown; no one can say why the same peculiarity in different individuals of the same species, and in individuals of different species, is sometimes inherited and sometimes not so; why the child often reverts in certain characters to its grandfather or grandmother or other much more remote ancestor; why a peculiarity is often transmitted from one sex to both sexes or to one sex alone, more commonly but not exclusively to the like sex. It is a fact of some little importance to us, that peculiarities appearing in the males of our domestic breeds are often transmitted either exclusively, or in a much greater degree, to males alone. A much more important rule, which I think may be trusted, is that, at whatever period of life a peculiarity first appears, it tends to appear in the offspring at a corresponding age, though sometimes earlier. In many cases this could not be otherwise: thus the inherited peculiarities in the horns of cattle could appear only in the offspring when nearly mature; peculiarities in the silkworm are known to appear at the corresponding caterpillar or cocoon stage. But hereditary diseases and some other facts make me believe that the rule has a wider extension, and that when there is no apparent reason why a peculiarity should appear at any particular age, yet that it does tend to appear in the offspring at the same period at which it first appeared in the parent. I believe this rule to be of the highest importance in explaining the laws of embryology. These remarks are of course confined to the first appearance of the peculiarity, and not to its primary cause, which may have acted on the ovules or male element; in nearly the same manner as in the crossed offspring from a short-horned cow by a long-horned bull, the greater length of horn, though appearing late in life, is clearly due to the male element.

Having alluded to the subject of reversion, I may here refer to a statement often made by naturalists namely, that our domestic varieties, when run wild, gradually but certainly revert in character to their aboriginal stocks. Hence it has been argued that no deductions can be drawn from domestic races to species in a state of nature. I have in vain endeavoured to discover on what decisive facts the above statement has so often and so boldly been made. There would be great difficulty in proving its truth: we may safely conclude that very many of the most strongly-marked domestic varieties could not possibly live in a wild state. In many cases we do not know what the aboriginal stock was, and so could not tell whether or not nearly perfect reversion had ensued. It would be quite necessary, in order to prevent the effects of intercrossing, that only a single variety should be turned loose in its new home. Nevertheless, as our varieties certainly do occasionally revert in some of their characters to ancestral forms, it seems to me not improbable, that if we could succeed in naturalising, or were to cultivate, during many generations, the several races, for instance, of the cabbage, in very poor soil (in which case, however, some effect would have to be attributed to the direct action of the poor soil), that they would to a large extent, or even wholly, revert to the wild aboriginal stock. Whether or not the experiment would succeed, is not of great importance for our line of argument; for by the experiment itself the conditions of life are changed. If it could be shown that our domestic varieties manifested a strong tendency to reversion, that is, to lose their acquired characters, whilst kept under unchanged conditions, and whilst kept in a considerable body, so that free intercrossing might check, by blending together, any slight deviations of structure, in such case, I grant that we could deduce nothing from domestic varieties in regard to species. But there is not a shadow of evidence in favour of this view: to assert that we could not breed our cart and race-horses, long and short-horned cattle and poultry of various breeds, and esculent vegetables, for an almost infinite number of generations, would be opposed to all experience. I may add, that when under nature the conditions of life do change, variations and reversions of character probably do occur; but natural selection, as will hereafter be explained, will determine how far the new characters thus arising shall be preserved.

When we look to the hereditary varieties or races of our domestic animals and plants, and compare them with species closely allied together, we generally perceive in each domestic race, as already remarked, less uniformity of character than in true species. Domestic races of the same species, also, often have a somewhat monstrous character; by which I mean, that, although differing from each other, and from the other species of the same genus, in several trifling respects, they often differ in an extreme degree in some one part, both when compared one with another, and more especially when compared with all the species in nature to which they are nearest allied. With these exceptions (and with that of the perfect fertility of varieties when crossed, a subject hereafter to be discussed), domestic races of the same species differ from each other in the same manner as, only in most cases in a lesser degree than, do closely-allied species of the same genus in a state of nature. I think this must be admitted, when we find that there are hardly any domestic races, either amongst animals or plants, which have not been ranked by some competent judges as mere varieties, and by other competent judges as the descendants of aboriginally distinct species. If any marked distinction existed between domestic races and species, this source of doubt could not so perpetually recur. It has often been stated that domestic races do not differ from each other in characters of generic value. I think it could be shown that this statement is hardly correct; but naturalists differ most widely in determining what characters are of generic value; all such valuations being at present empirical. Moreover, on the view of the origin of genera which I shall presently give, we have no right to expect often to meet with generic differences in our domesticated productions.

When we attempt to estimate the amount of structural difference between the domestic races of the same species, we are soon involved in doubt, from not knowing whether they have descended from one or several parent-species. This point, if could be cleared up, would be interesting; if, for instance, it could be shown that the greyhound, bloodhound, terrier, spaniel, and bull-dog, which we all know propagate their kind so truly, were the offspring of any single species, then such facts would have great weight in making us doubt about the immutability of the many very closely allied and natural species for instance, of the many foxes inhabiting different quarters of the world. I do not believe, as we shall presently see, that all our dogs have descended from any one wild species; but, in the case of some other domestic races, there is presumptive, or even strong, evidence in favour of this view.

It has often been assumed that man has chosen for domestication animals and plants having an extraordinary inherent tendency to vary, and likewise to withstand diverse climates. I do not dispute that these capacities have added largely to the value of most of our domesticated productions; but how could a savage possibly know, when he first tamed an animal, whether it would vary in succeeding generations, and whether it would endure other climates? Has the little variability of the ass or guinea-fowl, or the small power of endurance of warmth by the reindeer, or of cold by the common camel, prevented their domestication? I cannot doubt that if other animals and plants, equal in number to our domesticated productions, and belonging to equally diverse classes and countries, were taken from a state of nature, and could be made to breed for an equal number of generations under domestication, they would vary on an average as largely as the parent species of our existing domesticated productions have varied.

In the case of most of our anciently domesticated animals and plants, I do not think it is possible to come to any definite conclusion, whether they have descended from one or several species. The argument mainly relied on by those who believe in the multiple origin of our domestic animals is, that we find in the most ancient records, more especially on the monuments of Egypt, much diversity in the breeds; and that some of the breeds closely resemble, perhaps are identical with, those still existing. Even if this latter fact were found more strictly and generally true than seems to me to be the case, what does it show, but that some of our breeds originated there, four or five thousand years ago? But Mr Horner's researches have rendered it in some degree probable that man sufficiently civilized to have manufactured pottery existed in the valley of the Nile thirteen or fourteen thousand years ago; and who will pretend to say how long before these ancient periods, savages, like those of Tierra del Fuego or Australia, who possess a semi-domestic dog, may not have existed in Egypt?

The whole subject must, I think, remain vague; nevertheless, I may, without here entering on any details, state that, from geographical and other considerations, I think it highly probable that our domestic dogs have descended from several wild species. In regard to sheep and goats I can form no opinion. I should think, from facts communicated to me by Mr Blyth, on the habits, voice, and constitution, &c., of the humped Indian cattle, that these had descended from a different aboriginal stock from our European cattle; and several competent judges believe that these latter have had more than one wild parent. With respect to horses, from reasons which I cannot give here, I am doubtfully inclined to believe, in opposition to several authors, that all the races have descended from one wild stock. Mr Blyth, whose opinion, from his large and varied stores of knowledge, I should value more than that of almost any one, thinks that all the breeds of poultry have proceeded from the common wild Indian fowl (Gallus bankiva). In regard to ducks and rabbits, the breeds of which differ considerably from each other in structure, I do not doubt that they all have descended from the common wild duck and rabbit.

The doctrine of the origin of our several domestic races from several aboriginal stocks, has been carried to an absurd extreme by some authors. They believe that every race which breeds true, let the distinctive characters be ever so slight, has had its wild prototype. At this rate there must have existed at least a score of species of wild cattle, as many sheep, and several goats in Europe alone, and several even within Great Britain. One author believes that there formerly existed in Great Britain eleven wild species of sheep peculiar to it! When we bear in mind that Britain has now hardly one peculiar mammal, and France but few distinct from those of Germany and conversely, and so with Hungary, Spain, &c., but that each of these kingdoms possesses several peculiar breeds of cattle, sheep, &c., we must admit that many domestic breeds have originated in Europe; for whence could they have been derived, as these several countries do not possess a number of peculiar species as distinct parent-stocks? So it is in India. Even in the case of the domestic dogs of the whole world, which I fully admit have probably descended from several wild species, I cannot doubt that there has been an immense amount of inherited variation. Who can believe that animals closely resembling the Italian greyhound, the bloodhound, the bull-dog, or Blenheim spaniel, &c. so unlike all wild Canidae ever existed freely in a state of nature? It has often been loosely said that all our races of dogs have been produced by the crossing of a few aboriginal species; but by crossing we can get only forms in some degree intermediate between their parents; and if we account for our several domestic races by this process, we must admit the former existence of the most extreme forms, as the Italian greyhound, bloodhound, bull-dog, &c., in the wild state. Moreover, the possibility of making distinct races by crossing has been greatly exaggerated. There can be no doubt that a race may be modified by occasional crosses, if aided by the careful selection of those individual mongrels, which present any desired character; but that a race could be obtained nearly intermediate between two extremely different races or species, I can hardly believe. Sir J. Sebright expressly experimentised for this object, and failed. The offspring from the first cross between two pure breeds is tolerably and sometimes (as I have found with pigeons) extremely uniform, and everything seems simple enough; but when these mongrels are crossed one with another for several generations, hardly two of them will be alike, and then the extreme difficulty, or rather utter hopelessness, of the task becomes apparent. Certainly, a breed intermediate between two very distinct breeds could not be got without extreme care and long-continued selection; nor can I find a single case on record of a permanent race having been thus formed.

  1   2   3   4   5   6   7   8   9   ...   28


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©kagiz.org 2016
rəhbərliyinə müraciət